2018년 1월 11일 목요일

Deep Learning Multi Host & Multi GPU Architecture #2 - Keras 를 이용한 Scale Up, Horovod 를 이용한 Scale Out 성능 비교

Deep Learning Multi Host, Multi GPU 를 사용하고, BigData Scale 데이타를 처리하며, Auto Scale Out 확장 까지 고려한 아키텍처 구성에 대하여 연재 중이다.

개요는 이곳에서 확인 가능하다. [아키텍처 주안점 및 설계를 위한 고찰 : https://hoondongkim.blogspot.kr/2018/01/deep-learning-multi-host-multi-gpu.html ]

오늘은 두번째로, High Level 딥러닝 프레임워크 인 Keras 를 이용한 GPU Scale Up. 그리고 Horovod 를 이용한 Multi Host GPU Scale Out 의 성능에 대한 비교를 해보도록 하겠다.

우선 Tensorflow 나 pyTorch 나 CNTK , Caffe2 등에서 이미 GPU 나 Host 에 대한 확장을 이미 지원하고 있는데, 이러한 실험이 무슨 의미가 있는지 의아할 듯 하여, 그 의미에 대하여 다시 언급해 보도록 하겠다.
  1. 기존 Deep Learning 프레임워크에서의 Low  Level 병렬 수행 최적화 코드를 별도로 구현해야 하는 수고를 덜 수 있다.
    1. Keras 의 경우 Multi GPU 를 지원하기 시작한지 불과 3달도 체 지나지 않았다. 2017년 10월 경 버전 2.0.9 부터 지원되기 시작했다.
    2. 하지만, Keras는 단 1줄로 Multi GPU Scale Up 이 된다. (Horovod 와 함께 Keras 를 함께 실험한 이유이기도 하다.)
  2. Multi Host 는 훨씬 복잡하다.
    1. Keras 의 경우 Multi Host 는 아직 지원하지 않는 한계가 있다.
    2. Multi GPU Scale Up 은 8 GPU 가 Max 이다. 즉, BigData Scale 확장을 위해서는 Multi Host 도 동원해야 한다.
    3. Keras등은 자체적으로는 Multi Host 를 지원하지 않는데, Multi Host 까지 최소의 노력으로 사용가능 하도록 구성하기 위해서는 tensorflowOnSpark 나 Horovod, elephas 등을 이용해야 한다. 
  3. 개발 생산성 뿐 아니라, 성능 까지 더 좋았으면 한다.
    1. Horovod (made by Uber ) 의 official 페이지에는 Horovod 개발 배경을 다음과 같이 설명하고 있다.
    2. 이런 언급도 있다.
이제 위에서 언급된 (1) 병렬 코딩에 있어서의 개발생산성 , (2) 수행 시간 단축 효과가 어느 정도 인지 확인 해 보자. (맛보기 정도의 예제이기는 하지만, 느낌을 공유 하고자 한다.)

테스트는 아래 환경에서 수행되었다.
1. GPU Scale Up Test
=> Azure DSVM Image NC-Series .
=> K80 GPU.
=> Tensorflow + Keras
2. GPU Scale Out Test
=> Azure Batch AI Cluster with NC-Series vm.
=> K80 GPU.
=> Tensorflow + Keras + Horovod + Azure Batch AI

  1. Keras 를 이용한 Multi GPU Scale Up 코드
    1. 아래 코드 1줄이면 된다.
    2. 위에서 사용한 메소드를 호출하기 위해 필요한 package import 는 아래처럼 해주면 된다.
    3. 여기서 매우매우 유의해야 할 점이 있다.
      1. Keras 는 Multi GPU 사용 시 epoch 가 나눠져서 수행되는 것과 유사하게 동작한다.
      2. 즉, Epoch 를 GPU 갯수로 나누는 코드 적용이 필요하다.
      3. 이론적으로는 이 경우 GPU 갯수가 2배가 되면, Training 속도가 2배 빨라져야 할 것이다. 그러나, 실험을 해보면 그정도 까지 개선되지는 않는다. 그것은 GPU 가 증가 시 GPU 간 Data 의 동기화 Copy 등에 부가적인 Overhead 가 소요되기 때문이다.
  2. Keras 를 이용한 Multi GPU Scale Up 성능 비교
    1. General 한  LSTM 모델이다. 실험을 위해 Training Data Size 는 줄여놓은 모델이다.
    2. GPU 1개 (NC6)
      1. 150초 정도가 소요되었다.
    3. GPU 2개 (NC6)
      1. 127초가 소요되었다.
      2. 그리고 약간 성능도 개선되었다.
      3. 이 시점의 nvidia GPU 사용량은 다음과 같다.
      4. 위 처럼 2번째 GPU 는 보편적으로 Fully 일하지는 못한다. (그러나, 모델 및 알고리즘에 따라 그 양상에는 차이가 있었다.)
    4. GPU 4개 (NC12)
      1. 82초가 소요 되었다.
      2. 성능도 좀더 향상 되었다.
      3. GPU 갯수와 성능과의 관계는 뒤에서 다시 언급 토록 하겠다.
  3. Horovod 를 이용한 Multi GPU Scale Out 코드
    1. Keras 의 Scale Up 코드 만큼 심플하지는 않지만, Horovod 의 경우도 몇줄 코드만으로 Deep Learning 을 Multi Host 로 Scale Out 가능하다. 중요한 것은 Keras와 달리 Scale Up 도 되고, Scale Out 도 된다는데 있다.
    2. import 패키지
      1. import horovod.keras as hvd
    3. horovod init 코드
      1. hvd.init()
    4. Process 당 GPU 하나씩 할당하기 위한 코드
      1. config = tf.ConfigProto()
      2. config.gpu_options.allow_growth = True
      3. config.gpu_options.visible_device_list = str(hvd.local_rank())
      4. K.set_session(tf.Session(config=config))
    5. Epoch 분산 용으로 변경
      1. EPOCH = 200.0
      2. epochs = int(math.ceil(EPOCH / hvd.size()))
    6. Optimizer 분산용으로 변경
      1. opt = optimizers.Adadelta(1.0 * hvd.size())
    7. Callbacks 추가
      1. hvd.callbacks.BroadcastGlobalVariablesCallback(0)
    8. 아래는 위 코드 Example 이다.
      1. epoch 를 본 예에서는 직접 입력하였다. 이후 Optimizer 와 Callbacks 관련 2줄만 각각 model compile 과 model fit 전에 수행해 주면 된다.
  4. Horovod 를 이용한 Multi Host Scale Out 성능비교
    1. Node 1개
      1. Jupyter 를 통해 Azure Batch AI 클러스터 위로 Training Job 을 구동하였다.
      2. Node 1개에서 166초가 소요되었다. 
    2. Node 2개
      1. Node 2개 에서 멀티 Host 모드로 수행하자 아래처럼 로그가 2번씩 찍힌다.
      2. Horovod Cluster Size 가 2가 되자 initial epoch가 200 이었지만, 각 노드별 병렬 epoch 는 100으로 줄었다.
      3. 143초로 수행시간이 단축 되었다.
    3. Node 4개
      1. Horovod 는 계속 NC6 으로도 병렬 확장 테스트가 가능하나, Keras Scale Up 과의 비교를 위해 , 이 시점에 NC12로 바꾸었다. 왜냐하면, Scale Up 의 경우 NC6 은 GPU 2개 까지밖에 지원하지 않아서, GPU 4개를 테스트하는 시점 NC12로 바꾸었었기 때문이다. 
      2. 동일한 테스트를 위해 이시점은 NC12 이미지 4대에서의 테스트 이다. 각 멀티 노드에서 GPU 는 1개씩만 사용하였다.
      3. 즉, 4 Host * 1 GPU = 4GPU 환경이다.
      4. 예상했던 것처럼 로그가 4번씩 나오고 있다.
      5. 수행속도는 89초로 줄어 들었다.
[결론]

Keras 의 Scale Up과 Horovod 의 Scale Out 모두 Epoch 를 나눠가졌다. 이런 양상은 TensorflowOnSpark 와는 조금 다른 양상이다. TensorflowOnSpark 는 Epoch 를 나눠갖지 않고, Multi Node 의 Multi Job 들이 Mini Batch 를 1/N 로 나눠 갖는다. 각 특성이 갖는 양상에 따른 차이도 그 차이점을 고려해볼만 한 주제인듯 하다.(향후 시간이 허락한다면 이 부분도 파 보도록 하겠다.)

우선 오늘 실험해본 내용의 종합 결과는 아래와 같다.


앞에서도 언급 했던 것처럼 Keras 를 사용하면, Tensorflow Backend 의 GPU Scale Up 은 우선 매우 매우 쉽다. 성능 또한, 기본적인 initial time 을 제외 하고는 어느정도 선형적인 증가를 보여 준다. 좀 더 특이한 양상이 발견되었던 점은, (적은 양의 데이타에서 특히) GPU 갯수가 늘어나자 좀더 성능이 빨리 좋아지는 양상이 발견되었다는 점이다. 이는 앙상블 효과 처럼 보인다. 그리고, 마치 가끔 Mini Batch Size 를 키웠더니, 정확도가 오히려 개선되었을 때와 비슷한 양상이다.(일반적으로 그 반대가 더 많지만...) 모든 weight 의 실시간 공유가 꼭 좋은것 만은 아니다. 4개의 독립적인 GPU 가 어느정도는 독자적인 local minigma 를 찾고, 각 GPU 가 1번씩 epoch 가 끝났을때, 지연 동기화를 하게 되면, local minigma 에 빠질 확률이 훨씬 줄어들기 때문에, 분산 지연 weight 동기화가 오히려 training 에 긍정의 효과를 준 것으로 보여진다.

Horovod 를 통한 Scale Out 형태의 GPU 확장은 예상 했던 것 처럼, Scale Up 모드보다는 무거운 연산임이 실험을 통해서도 확인 되었다. 노드 갯수가 작을때에는 Single Node 의 멀티 GPU 보다 더 느린 양상을 보였다. 이는 노드갯수가 4개 정도로 늘어나면 큰 차이가 나지 않는다. (이 곳에 언급하진 않았지만, 노드 갯수가 많아질수록 성능은 역전된다.) 즉, Horovod 시나리오는 좀더 BigData Scale Deep Learning 에 가깝다. 

Production 시스템에서 Training Data 가 쌓이고, 그 크기가 점점 커지기 시작하면, 점점 training 전에 전처리 단계에서 부터, 1대 머신의 물리 Disk 를 모두 동원해도 감당이 안될 정도로 Data가 커지는 경우가 있다. 이 경우 Scale Out 시나리오에서는 해당 노드에 간단하게 Hadoop 정도를 설치해주면, 데이타는 복수 Node 에 펼쳐져 저장되게 되고, Disk IO 는 분산되어, 훨씬 성능도 좋아진다. ( Tensorflow 의 공식 github 에는 이러한 경우를 위해hadoop 에 저장된 Training Data를 핸들링 할 수 있는 Hadoop Connector 유틸리티가 제공되고 있다. Spark Connector 도 있다. TensorflowOnSpark 는 내부적으로 해당 유틸리티를 활용하고 있다.) Data 의 크기는 크지 않지만, Disk IO 를 20~30배 이상 성능적으로 개선해보고자 할때는 Hadoop 대신에 해당 노드에 Spark 나 Tachyon (이름이 바뀌긴 했으나, original 이름으로 더 알려진) 이나, Apache ignite 를 설치하고 수행할 수도 있다.

위 실험에서도 알 수 있는것처럼, 데이타의 크기가 1대의 머신에 담을 수 있는 크기이고, GPU는 8개 미만만 사용해도 되는 수준이라고 한다면, Scale Up 이 더 유리하다. ( Deep Learning Infra 설계시 참고하기 바란다. 작은 데이타는 1Node 4GPU 가 1GPU 4Node 보다 성능이 더 좋음을 위해서 보여 준 바 있다.)

하지만, Scale Up 은 Nvidia 의 dependency 로 대부분의 Deep Learning 프레임워크들이 8개 까지만 지원하는 경우가 많다. 하지만, Scale Out 은 그런 한계를 극복 할 수 있다. Horovod 는 그래서, 1대 Node 에 GPU 를 4개씩 꼳아서 8대를 클러스터로 묶어서 수행하는 경우 Scale Up 과 Scale Out 의 성능을 동시에 활용할 수 있다. 즉, 그 경우 4*8 = 32개 GPU 를 사용할 수 있다. Keras 는 8개가 한계 이지만, Horovod 그리고, Horovod + Cloud PaaS (본 실험에서는 이 부분을 Azure batch AI 를 이용했다.) 를 사용하는 경우 수백대 이상 까지도 Node 및 GPU를 동원하여, 분산 Training 의 장점을 몇번의 클릭으로 수행 해 볼 수 있다.

Keras 는 1줄 코드 수정으로 Scale Up 이 되었지만,  Horovod 는 6~8 줄 정도의 수정이 필요하였다. 하지만, 익숙해지면, 1분안에 적용 가능한 수준이었다. 때문에, 발생산성 향상은 검증되었다고 본다.

Horovod  의 위키에는 다양한 Horovod 성능 수치 비교자료들이 존재한다. 아래는 그중에 어떤 사용자의 경험을 보여주는 성능비교 수치이다. Scale Out 이 아닌 Scale Up 의 경우에도 8개 GPU 이상일때는 Horovod 방식이 성능이 더 잘 나오는 것을 표현해주고 있다. 내가 했던 실험 데이타 또한 처음에는 Horovod 가 느리다가 Node 4개를 기점으로 역전되는 모양을 보여주었었다.

Scale Out 부분에 있어서도, 대부분의 벤치마크 자료나, 대다수의 비교 자료에서 Horovod 는 Tensorlfow 에서 자체적으로 제공하는 Parameter Server 를 활용한 방식 보다, 수행 속도 측면에서 성능이 더 잘 나오는 것을 확인 해 볼 수 있다.

즉, 성능 적인 개선도 검증되었다고 여겨진다.


개발이 훨씬 쉬워지면서 성능이 뒤쳐지지 않는다면... 아키텍처링 입장에서는 마다할 이유가 없다.


댓글 3개:

  1. 작성자가 댓글을 삭제했습니다.

    답글삭제
  2. )#) Presenting the data that is info in order to navigate your current traffic may well be while quick simply because giving an answer to typically the journalist's issues connected with what individuals, just what, at which, once, the correct way, in addition to how come. https://imgur.com/a/dWpmXVj https://imgur.com/a/BxmibHk https://imgur.com/a/S9OEqF1 https://imgur.com/a/8t16GoI https://imgur.com/a/qDi82uM https://imgur.com/a/AttalM4 https://imgur.com/a/wvgTpKe

    답글삭제
  3. If you're attempting to lose kilograms then you need to get on this totally brand new personalized keto meal plan diet.

    To create this keto diet service, licensed nutritionists, fitness trainers, and top chefs joined together to provide keto meal plans that are useful, suitable, cost-efficient, and satisfying.

    Since their grand opening in early 2019, thousands of people have already completely transformed their body and well-being with the benefits a good keto meal plan diet can provide.

    Speaking of benefits: in this link, you'll discover 8 scientifically-confirmed ones offered by the keto meal plan diet.

    답글삭제