발표한지 좀 시간이 지나긴 했지만, 한 두달여 전 Korea Spark Summit Day 에서 내가 발표했던 내용의 슬라이더 전문이다.
주로 아래 내용을 다루었었다.
1. Machine Learning Approach vs Deep Learning Approach
2. 한글 Text Classification 문제를 전통적인 Machine Learning 으로 풀어보았을때의 장단점 및 성능 수치.
3. 동일한 문제를 Deep Learning 으로 풀어보았을때의 장단점 및 성능 수치.
4. 한글 Text Classification 문제를 다양한 알려진(좀 유명한) Approach 로 각각 접근 했을때, 실무 데이타 기준(IMDB 등 논문에서 등장하는 데이타보다 훨씬 양이 많고, 훨씬 어려운 문제(138지 Top 1 분류)) 성능 수치 비교.
5. Production Level , Real World 의 Big Data Scale Large Data Set 을 가지고 Deep Learning 프로젝트를 진행하는 경우에 접하게 되는 다양한 문제점들.
6. Spark 를 활용하여 Big Data Scale Deep Learning 을 하는 방법론 소개.
아래는 해당 내용의 전문이다.
댓글 없음:
댓글 쓰기